Seminar topics 2019: Sessions for NEUR0017 students

Sign up for one of the seminars by sending an e-mail to, giving also second and third choices after the start of the course. Seminars will be assigned on a first-come, first-served basis. Topics already assigned are followed by the initials of the presenter in red.

Presentations should each be about 10 minutes in length. Please time your presentations before you give them. A data projector will be available in the room. If you need any further help with references, please e-mail the seminar organizers.

The seminar dates are listed in the timetable. Scheduling will depend on student numbers and choices.

Titles already assigned will be denoted by the initials in red.

Retina seminar topics (AV)

A. How are the center-surround receptive fields of the retina formed and what are their significance?

B. What do retinal amacrine cells do?

C. Why are there different classes of ganglion cell in the retina?

D. How are distinct ON and OFF responses generated in the retina?

E. What are the functions of the excitatory amino acid transmitters in the retina?

F. What are the functions of the inhibitory amino acid transmitters in the retina?

G. How is the electroretinogram generated and recorded?

H. How does the function of the Inner Plexiform Layer and Ganglion Cell layer circuitry change with changes in light level?

I. What is the function of Dopamine in the retina?

J. What do retinal horizontal cells do?

K. Discuss the function of convergence and divergence within the retinal circuitry.

L. How do signals from Rod photoreceptors reach retinal ganglion cells to drive ON and OFF responses?

M. How are parallel pathways generated in the retina?

N. How do ipRGCs contribute to non-image forming vision?

O. How do ipRGCs contribute to image-forming vision?

General retina (everyone should be aware of the Web textbook):
First steps in seeing. R.W Rodieck

Phototransduction references
Leibrock, C. S. (1998). "Molecular basis of dark adaptation in rod photoreceptors." Eye 12: 511-520.
Pugh, E. N., S. Nikonov, and Lamb, T.D. (1999). "Molecular mechanisms of vertebrate photoreceptor light adaptation." Current Opinion on Neurobiology 9: 410-418.
Lamb, T. D. (1999). Photopigments and the biophysics of transduction in cone photoreceptors. Color vision: From Genes to Perception. K. Gegenfurtner and L. T. Sharpe. Cambridge, Cambridge University Press: 89-101.
Pugh, E. N. and T. D. Lamb (2000). Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation. Handbook of biological physics, Vol. 3, Molecular mechanisms of visual transduction. D. G. Stavenga, W. J. de Grip and E. N. Pugh. Amsterdam, Elsevier: 183-255.
Arshavsky, V. Y., T. D. Lamb, and Pugh, E.N. (2000). "G proteins and phototransduction." Annual review of Physiology 64: 153-187.

Pathways and cortical processing seminar topics (SS)

Please note that the references are given to help the student get started in peparing the talk--the presentation should aim to adopt a broader outlook.

A. Does activity in the 'dorsal' visual pathway reach visual awareness?
Two visual systems re-viewed. Milner and Goodale, Neuropsychologia. 46: 774-785 (2008).

B. What can a tecto-thalamo-cortical pathway contribute to vision? (Discuss one example).
Thalamic pathways for active vision. Wurtz et al., Trends in Cognitive Sciences. 15: 177-84 (2011).

C. Visual stability--the eyes move yet the world does not. Why not?
Visual stability based on remapping of attention pointers. Cavanagh et al., Trends in Cognitive Sciences. 14: 147-153 (2010).

D. What changes in the brain during multistable percepts?
The neural bases of multistable perception. Sterzer et al., Trends in Cognitive Sciences. 13: 310-8 (2009).

E. Where in the visual pathway does the motion aftereffect arise?
The motion aftereffect reloaded. Mather et al., Trends in Cognitive Sciences. 12: 481-487 (2008).

F. Does the brain get its wires crossed in visual synaesthesia (e.g., seeing sounds in colour)?
Synaesthesia and cortical connectivity. Bargary and Mitchell, Trends in Neurosciences. 31: 335-342 (2008).
Sound-colour synaesthesia: to what extent does it use cross-modal mechanisms common to us all? Ward, J., et al Cortex 42, 264-280 (2006).

G. What is "blindsight'?
Blindsight depends on the lateral geniculate nucleus. Schmid et al., Nature. 466: 373-377 (2010).

H. Where does the brain learn to read?

The unique role of the visual word form area in reading. Dehaene and Cohen, Trends in Cognitive Sciences. 15: 254-62 (2011).
The interactive account of ventral occipitotemporal contributions to reading. Price and Devlin, Trends in Cognitive Sciences. 15: 246-53 (2011).

I. What might be the nature of visual brain dysfunction in dyslexia?
Dyslexia: a deficit in visuo-spatial attention, not in phonological processing. Vidyasagar TR, Pammer K, Trends in Cognitive Sciences. 14:57-63 (2010)

J. What is the difference between consciousness and attention?
Towards a true neural stance on consciousness. Lamme, Trends in Cognitive Sciences. 10: 494-501 (2006).
Attention and consciousness: two distinct brain processes. Koch and Tsuchiya, Trends in Cognitive Sciences. 11: 16-22 (2007).

K. What does binocular rivalry reveal about visual processing?
Neural bases of binocular rivalry. Tong et al., Trends in Cognitive Sciences. 10: 502-511 (2006).

L. What does the Moon Illusion tell us about size perception?
Explaining the moon illusion. Kaufman, L. & Kaufman, J.H. Proc. Natl. Acad. Sci. U. S. A. 97, 500-505 (2000).

M. The ‘binding problem’: dead or alive?
The binding problem lives on.  Wolfe JM, Trends in Cognitive Sciences 16:307-309 (2012)

N. How viable is the ‘neural fatigue’ theory for visual aftereffects?
Visual aftereffects. Thompson P &  Burr D  Current Biology 19: R11-114. (2009)

O. In what way does human perception exhibit the ‘gambler’s fallacy’?
Visual perception: Knowing what to expect.  Clifford CW  Current Biology 22: R223-225. (2012)


Visual function seminar topics (AS)

A. Compare and contrast the properties of rod and cone vision. Why do we need two systems?

B. How do we see colour, and what are the limitations of our colour vision?

C. Describe the more common types of colour "blindness" and their causes.

D. Show examples of visual illusions. For some of them, provide an explanation of what the illusion tells us about the visual system.

E. What do the psychophysical changes that occur with light adaptation tell us about how the visual system light adapts?

F. What monocular and binocular cues allow us to see depth?

G. Describe the mechanisms of light adaptation.

H. Show illusions of colour and explain what they tell us about colour vision.

I. How do we see depth in a random-dot stereograms?

J. How do we encode the direction and speed of motion?

K. Why stimuli detected by the luminance and chromatic pathways look so different?

L. Contrast sensitivity and masking.

Rodieck, R. W. (1998). The First Steps in Seeing. Sinauer
Kaiser, P. K. and R. M. Boynton (1996). Human Color Vision, Second Edition. Washington, DC, Optical Society of America.
Sharpe, L. T et al. (1999). Opsin genes, cone photopigments, color vision and colorblindness. In Color vision: From Genes to Perception. K. Gegenfurtner and L. T. Sharpe. Cambridge, Cambridge University Press: 3-51.
Hood, D. C. (1998). Lower-level visual processing and models of light adaptation." Annual Review of Psychology 49: 503-535.
Any introductory texts on "Sensation and Perception" will cover topics D and E in some detail. For E, also look for books in the library on "Visual illusions", of which there are several.

Webvision at