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In the companion study (C. Ripamonti et al., 2004), we present data that measure the effect of surface slant on perceived 
lightness. Observers are neither perfectly lightness constant nor luminance matchers, and there is considerable individual 
variation in performance. This work develops a parametric model that accounts for how each observer’s lightness 
matches vary as a function of surface slant. The model is derived from consideration of an inverse optics calculation that 
could achieve constancy. The inverse optics calculation begins with parameters that describe the illumination geometry. If 
these parameters match those of the physical scene, the calculation achieves constancy. Deviations in the model’s 
parameters from those of the scene predict deviations from constancy. We used numerical search to fit the model to each 
observer’s data. The model accounts for the diverse range of results seen in the experimental data in a unified manner, 
and examination of its parameters allows interpretation of the data that goes beyond what is possible with the raw data 
alone. 
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Introduction 
In the companion study (Ripamonti et al., 2004), we 

report measurements of how perceived surface lightness 
varies with surface slant. The data indicate that observers 
take geometry into account when they judge surface light-
ness, but that there are large individual differences. This 
work develops a quantitative model of our data. The model 
is derived from an analysis of the physics of image forma-
tion and of the computations that the visual system would 
have to perform to achieve lightness constancy. The model 
allows for failures of lightness constancy by supposing that 
observers do not perfectly estimate the lighting geometry. 
Individual variation is accounted for within the model by 
parameters that describe each observer’s representation of 
that geometry. 

Figure 1 replots experimental data for three observers 
(HWK, EEP, and FGS) from Ripamonti et al. (2004). Ob-
servers matched the lightness of a standard object to a pal-

ette of lightness samples, as a function of the slant of the 
standard object. The data consist of the normalized relative 
match reflectance at each slant. If the observer had been 
perfectly lightness constant, the data would fall along a 
horizontal line, indicated in the plot by the red dashed line. 
If the observer were making matches by equating the re-
flected luminance from the standard and palette sample, 
the data would fall along the blue dashed curves shown in 
the figure. The complete data set demonstrates reliable in-
dividual differences ranging from luminance matches (e.g., 
HWK) toward approximations of constancy (e.g., FGS). 
Most of the observers, though, showed intermediate per-
formance (e.g., EEP). 

Given that observers are neither perfectly lightness 
constant nor luminance matchers, our goal is to develop a 
parametric model that can account for how each observer’s 
matches vary as a function of slant. Establishing such a 
model offers several advantages. First, individual variability 
may be interpreted in terms of variation in model parame-
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ters, rather than in terms of the raw data. Second, once a 
parametric model is established, one can study how varia-
tions in the scene affect the model parameters (cf., Krantz, 
1968; Brainard & Wandell, 1992). Ultimately, the goal is 
to develop a theory that allows prediction of lightness 
matches across a wide range of scene geometries. 

A number of broad approaches have been used to 
guide the formulation of quantitative models of context 
effects. Helmholtz (1896) suggested that perception should 
be conceived of as a constructed representation of physical 
reality, with the goal of the construction being to produce 
stable representations of object properties. The modern 
instantiation of this idea is often referred to as the compu-
tational approach to understanding vision (Marr, 1982; 
Landy & Movshon, 1991). Under this view, perception is 

difficult because multiple scene configurations can lead to 
the same retinal image. In the case of lightness constancy, 
the ambiguity arises because illuminant intensity and sur-
face reflectance can trade off to leave the intensity of re-
flected light unchanged. 
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Because the retinal image is ambiguous, what we see 
depends not only on the scene but also on the rules the 
visual system employs to interpret the image. Various au-
thors choose to formulate the these rules in different ways, 
with some focusing on constraints imposed by known 
mechanisms (e.g., Stiles, 1967; Cornsweet, 1970) and oth-
ers on constraints imposed by the statistical structure of the 
environment (e.g., Gregory, 1968; Marr, 1982; Landy & 
Movshon, 1991; Wandell, 1995; Geisler & Kersten, 2002; 
Purves & Lotto, 2003). 

In previous work, we have elaborated equivalent illumi-
nant models of observer performance for tasks where sur-
face mode or surface color was judged (Speigle & Brainard, 
1996; Brainard, Brunt, & Speigle, 1997;  see also Brainard, 
Wandell, & Chichilnisky, 1993; Maloney & Yang, 2001; 
Boyaci, Maloney, & Hersh, 2003). In such models, the ob-
server is assumed to be correctly performing a constancy 
computation, with the one exception that their estimate of 
the illuminant deviates from the actual illuminant. The 
parameterization of the observer’s illuminant estimate de-
termines the range of performance that may be explained, 
with the detailed calculation then following from an analy-
sis of the physics of image formation. Here we present an 
equivalent illuminant model for how perceived lightness 
varies with surface slant. Our model is essentially identical 
to that formulated recently by Boyaci et al. (2003). 

Equivalent illuminant model 

Overview Figure 1. Normalized relative matches, replotted from Ripamonti
et al. (2004). Data are for observer HWK (Paint Instructions),
observer EEP (Neutral Instructions), and observer FGS (Neutral
Instructions). See companion study for experimental details. Blue
dashed lines show luminance matching predictions; red dashed
lines show lightness constancy predictions. 

Our model is derived from consideration of an inverse 
optics calculation that could achieve constancy. The inverse 
optics calculation begins with parameters that describe the 
illumination geometry. If these parameters match those of 
the physical scene, the calculation achieves constancy. De-
viations in the model’s parameters from those of the scene 
predict deviations from constancy. In the next sections we 
describe the physical model of illumination and how this 
model can be incorporated into an inverse optics calcula-
tion to achieve constancy. We then show how the formal 
development leads to a parametric model of observer per-
formance. 

Physical model 
Consider a Lambertian flat matte standard object1 that 

is illuminated by a point2 directional light source. The 
standard object is oriented at a slant Nθ  with respect to a 
reference axis (x-axis in Figure 2). The light source is located 
at a distance  from the standard surface. The light source d
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, 2
sin [cos( )]

N
D D D N

i i
I

L r E
d

θ
φ θ θ− =  

 
A+ . (5) 

The luminance of the standard surface 
N,iL θ  reaches its 

maximum value when 0D Nθ θ− = °  and its minimum when 
90D Nθ θ− ≥ ° . In the latter case only the ambient light AE  

illuminates the standard surface. 
It is useful to simplify Equation 5 by factoring out a 

multiplicative scale factor α  that is independent of Nθ : 

, (cos( ) )
Ni i D NL r Fθ α θ θ= − A+ . (6) 

In this expression, 

2
sinDI
d

Dφα =  and AF   

is given by 

2
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A

A
D D

d EF
I φ

= . 

Physical model fit 
How well does the physical model describe the illumi-

nation in our apparatus?  We measured the luminance of 
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ure 2. Reference system centered on the standard object.
e standard object is oriented so that its surface normal forms
angle Nθ  with respect to the x-axis. The light source is lo-
ed at a distance  from this point, the light source azimuth
th respect to the x-axis) is 

d
Dθ , and the light source declina-

 (with respect to the z-axis) is Dφ . 
muth is indicated by Dθ  and the light source declination 
ith respect to the z-axis) by Dφ . 

,θ

)]NθDφ θ −

The luminance 
NiL of the light reflected from the 

ndard surface i  depends on its surface reflectance , its 
nt 

ir
Nθ , and the intensity of the incident light : E

, Ni iL rθ = E . (1) 0Nθ =

hen the light arrives only directly from the source, we 
 write 

DE E=  (2) 

ere 

2
sin [cos(D D

D
I

E
d

= .  (3) 

re DI  represents the luminous intensity of the light 
rce. Equation 3 applies when 90 ( ) 90D Nθ θ− ° ≤ − ≤ °

( )D N

. 
r a purely directional source and θ θ−  outside of 
s range, . 0DE =

In real scenes, light from a source arrives both directly 
d after reflection off other objects. For this reason, the 
ident light  can be described more accurately as a 
pound quantity made of the contribution of direc-

nal light  and some diffuse light 

E

DE AE . The term AE  
vides an approximate description of the light reflected 

 other objects in the scene. We rewrite Equation 2 as  

D AE E E= +   (4) 

our standard objects under all experimental slants, and av-
eraged these over standard object reflectance. Figure 3 
(solid circles) shows the resulting luminances from each 
experiment of the companion work (Ripamonti et al., 
2004) plotted versus the standard object slant. For each 
experiment, the measurements are normalized to a value of 
1 at ° . We denote the normalized luminances by 

N
normLθ . The solid curves in Figure 3 denote the best fit of 

Equation 6 to the measurements, where Dθ , AF  and α  
were treated as a free parameters and chosen to minimize 
the mean squared error between model predictions and 
measured normalized luminances. 

The fitting procedure returns two estimated parameters 
of interest: the azimuth Dθ  of the light source and the 
amount AF  of ambient illumination. (The scalar α  simply 
normalizes the predictions in accordance with the normali-
zation of the measurements.)  We can represent these pa-
rameters in a polar plot, as shown in Figure 4. The azi-
muthal position of the plotted points represents Dθ , while 
the radius v  at which the points are plotted is a function of 
AF :  

1
1A

v
F

=
+

. (7) 

If the light incident on the standard is entirely directional, 
then the radius of the plotted point will be 1. In the case 
where the light incident is entirely ambient, the radius will 
be 0. 

The physical model provides a good fit to the depend-
ence of the measured luminances on standard object slant. 
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Figure 4. Light source position estimates of the physical model.
Green lines represent the light source azimuth as measured in
the apparatus. In Experiments 1, 2, and 3 (light source on the
left), the actual azimuth was Dθ = -36°. In Experiment 3 (light
source on the right), the actual azimuth was Dθ = 23°. The red
symbol represents light source azimuth estimated by the model
for Experiments 1 and 2 ( Dθ = -25°). For the light source on the
left, in Experiment 3, the model estimate is indicated in blue
( Dθ = -30°); for the light source on the right, in purple ( Dθ  = 25°).
The radius of the plotted points provides information about the
relative contributions of directional and ambient illumination to the
light incident on the standard object through Equation 7. The
radius of the outer circle in the plot is 1. The parameter values
obtained for AF  are AF  = 0.18 (Experiments 1 and 2), AF =
0.43 (Experiment 3, left), and AF  = 0.43 (Experiment 3, right). 

 
Figure 3. The green symbols represent the relative normalized 
luminance measured for standard objects used in Ripamonti et 
al. (

It should be noted, however, that the recovered azimuth of 
the directional light source differs from our direct meas-
urement of this azimuth. The most likely source of this dis-
crepancy is that the ambient light arising from reflections 
off the chamber walls has some directional dependence. 
This dependence is absorbed into the model’s estimate of 
Dθ . 

Equivalent illuminant model 
Suppose an observer has full knowledge of the illumi-

nation and scene geometry and wishes to estimate the re-
flectance of the standard surface from its luminance. From 
Equation 6 we obtain the estimate 

,
, (cos( ) )

N
N

i
i

D N A

L
r

F
θ

θ α θ θ
=

− +
. (8) 

We use a tilde to denote perceptual analogs of physical 
quantities. 2004), and the colored curves illustrate the fit of the model 

described in the text. The top panel corresponds to the light 
source set-up used in Experiments 1 and 2, middle panel to Ex-
periment 3 light source on the left, and bottom panel for Experi-
ment 3 light source on the right. 

To the extent that the physical model accurately pre-
dicts the luminance of the reflected light, Equation 8 pre-
dicts that the observer’s estimates of reflectance will be cor-
rect and thus Equation 8 predicts lightness constancy. To 
elaborate Equation 8 into a parametric model that allows 
failures of constancy, we replace the parameters that de-
scribe the illuminant with perceptual estimates of these 
parameters: 

,
, (cos( ) )

N
N

i
i

D N A

L
r

F
θ

θ α θ θ
=

− +
 (9) 

where Dθ  and AF  are perceptual analogs of Dθ  and AF . 
Note that the dependence of , Nir θ  on slant in Equation 9 is 
independent of . ir

Equation 9 predicts an observer’s reflectance estimates 
as a function of surface slant, given the parameters Dθ  and 
AF  of the observer’s equivalent illuminant. These parameters 

describe the illuminant configuration that the observer uses 
in his or her inverse optics computation. 

Our data analysis procedure aggregates observer 
matches over standard object reflectance to produce relative 
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normalized matches 
N

. The relative normalized 
matches describe the overall dependence of observer 
matches on slant. To link 

normrθ

Equation 8 with the data, we as-
sume that the normalized relative matches obtained in our 
experiment (see “Appendix” of Ripamonti et al., 2004) are 
proportional to the computed , Nir θ , leading to the model 
prediction 

(cos( ) )
N

N
A

norm
norm

D N

L
r

F
θ

θ β
θ θ

=
− +

 (10) 

where β  is a constant of proportionality that is determined 
as part of the model fitting procedure. In Equation 10 we 
have substituted 

N
 for 

N
normLθ ,iL θ  because the contribution 

of surface reflectance  can be absorbed into ir β . 
Equation 10 provides a parametric description of how 

our measurements of perceived lightness should depend on 
slant. By fitting the model to the measured data, we can 
evaluate how well the model is able to describe perform-
ance, and whether it can capture the individual differences 
we observe. In fitting the model, the two parameters of in-
terest are Dθ  and AF , while the parameter β  simply ac-
counts for the normalization of the data. 

In generating the model predictions, values for Nθ  and 

N
 are taken as veridical physical values. It would be 

possible to develop a model where these were also treated 
as perceptual quantities and thus fit to the data. Without 
constraints on how 

normLθ

Nθ  and 
N

 are related to their 
physical counterparts, however, allowing these as parame-
ters would lead to excessive degrees of freedom in the 
model. In our slant matching experiment, observer’s per-
ception of slant was close to veridical and thus using the 
physical values of 

normLθ

Nθ  seems justified. We do not have in-
dependent measurements of how the visual system registers 
luminance. 

Model fit 

Fitting the model 
For each observer, we used numerical search to fit the 

model to the data. The search procedure found the equiva-
lent illuminant parameters Dθ  (light source azimuth) and 
AF  (relative ambient) as well as the overall scaling parame-

ter β  that provided the best fit to the data. The best fit was 
determined as follows. For each of the three sessions 

 we found the normalized relative matches for that 
session, 

1,2,3k =
, N

norm
kr θ . We then found the parameters that 

minimized the mean squared error between the model’s 
prediction and these , N

no
kr θ

rm . The reason for computing 
the individual session matches and fitting to these, rather 
than fitting directly to the aggregate 

N
normrθ , is that the 

former procedure allows us to compare the model’s fit to 
that obtained by fitting the session data at each slant to its 
own mean. 

Model fit 
Model fit results are illustrated in the left hand col-

umns of Figures 5 to 10. The dot symbols are observers’ 
normalized relative matches and the orange curve in each 
panel shows the best fit of our model. We also show the 
predictions for luminance and constancy matches as, re-
spectively, a blue or red dashed line. The right hand col-
umns of Figures 5 to 10 show the model’s Dθ  and AF  for 
each observer, using the same polar format introduced in 
Figure 4. 

With only a few exceptions, the equivalent illuminant 
model captures the wide range of performance exhibited by 
individual observers in our experiment. To evaluate the 
quality of the fit, we can compare the mean squared error 
for the equivalent illuminant  model to the variability 
in the data. To make this comparison, we also fit the 

2
equivε

, N
norm

kr θ  at each session and slant by their own means. For 
each observer, the resulting mean squared error  is a 
lower bound on the mean squared error that could be ob-
tained by any model. A figure of merit for the equivalent 
illuminant model is then quantity  

2
precε

equiv
prec

prec

ε
η

ε
= .  

This quantity should be near unity if the model fits well, 
and values greater than unity indicate fit error in units 
yoked to the precision of the data. Across all our observers 
and light source positions, the mean value of  was 
1.23, indicating a good but not perfect fit. 

equivη

For comparison, we also computed η  values associated 
with four other models. These are 

a) luminance matching: 
N N
norm normr Lθ θβ=  

b) lightness constancy: 
N
norm

θr β=  

c) mixture: ( )(1 )
N N
norm norm

θ θr Lβ λ λ= + −  

d) quadratic: 2
N
norm

N Nrθ αθ β θ= + γ+ . 

The mixture model describes observers whose responses are 
an additive mixture of luminance matching and lightness 
constancy matches. If this model fit well, the mixing pa-
rameter λ  could be interpreted as describing the matching 
strategy adopted by different observers. The quadratic 
model has no particular theoretical significance, but has the 
same number of parameters as our equivalent illuminant 
model and predicts smoothly varying functions of Nθ . The 
dark bars in Figure 11 show the mean η  values for all five 
models. We see that the error for the equivalent illuminant 
model is lower than that for the four comparison models. 
This difference is statistically significant at the p < .0001  
for all models, as determined by sign test on the η  values 
obtained for each observer/light source position combina-
tion. 
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tive normalized matches. In the left column the green dots represent observers’ relative normalized
xperiment 1. Error bars indicate 90% confidence intervals. The orange curve is the model’s best fit
urve represents predictions for luminance matches and the red dashed line for constancy matches.

ent illuminant parameters (green symbols) in the same polar format introduced in Figure 4. The po-
arameters obtained by fitting the physical model to the measured luminances (red symbols). The
 plot are the error-based constancy index for the observer, while those at the top left of the polar
ased index, derived from the equivalent illuminant parameters. 



Journal of Vision (2004) 4, 735-746 Bloj et al. 741 

0

-90 90

-60 60

-30 30

LEF0.32

0

-90 90

-60 60

-30 30

IBO0.49

0

-90 90

-60 60

-30 30

HWC0.59

0

-90 90

-60 60

-30 30

JPL0.62

0

-90 90

-60 60

-30 30

KIR0.75

0

-90 90

-60 60

-30 30

NMR0.77

0

-90 90

-60 60

-30 30

MRG0.91

-60 -30 0 30 60

0.4

0.8

1.2

1.6
0.36

-60 -30 0 30 60

0.4

0.8

1.2

1.6
0.49

-60 -30 0 30 60

0.4

0.8

1.2

1.6
0.52

-60 -30 0 30 60

0.4

0.8

1.2

1.6
0.24

-60 -30 0 30 60

0.4

0.8

1.2

1.6
0.62

-60 -30 0 30 60

0.4

0.8

1.2

1.6
0.54

-60 -30 0 30 60

0.4

0.8

1.2

1.6
0.63

R
el

at
iv

e 
m

at
ch

 r
ef

le
ct

an
ce

Standard object slant  

Figure 6. Model fit to observers’ relative normalized matches for 
Experiment 2. Same format as Figure 5. 
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Figure 7. Model fit to observers’ relative normalized matches for 
Experiment 3 (light on the left, Neutral Instructions). Same format 
as Figure 5. 
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Figure 8. Model fit to observers’ relative normalized matches for 
Experiment 3 (light on the right, Neutral Instructions). Same for-
mat as Figure 5. 
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Figure 9. Model fit to observers’ relative normalized matches for 
Experiment 3 (light on the left, Paint Instructions). Same format 
as Figure 5. 
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Figure 10. Model fit to observers’ relative normalized matches for 
Experiment 3 (light on the right, Paint Instructions). Same format 
as Figure 5. 
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Figure 11. Evaluation of model fits. Dark bars show the mean η  
values obtained when the matching data for each slant, session, 
and observer are fitted by the equivalent illuminant model and 
the four comparison models described in the text. Also shown is 
the η  value when each 

N
 is fit by its own mean. This value 

is labeled Precision and is constrained by the definition of 

normrθ
η  to 

be unity. No model can have an η  less than unity. Light bars 
show the cross-validation η  values. 

The various models evaluated above have different 
numbers of parameters.  For this reason, it is worth asking 
whether the equivalent illuminant model performs better 
simply because it overfits the data.  Answering this question 
is difficult. Selection amongst non-nested and/or non-
linear models remains a topic of active investigation (see 
the following special issue on model selection: Journal of 
Mathematical Psychology, 2000, 44) and the literature does 
not yet provide a recipe. Here we adopt a cross-validation 
approach. 

Our measurements consist of the ,
norm

kr θN  measured 
in three sessions. We selected the data from each possible 
pair of two sessions and used the result to fit each model. 
Then for each model and session pair we evaluated how 
well the model fit the session data that had been excluded 
from the fitting procedure, using the same η  metric de-
scribed above. The intuition is that a model that overfits 
the data should generalize poorly and have high cross-
validation η  values, while a model that captures structure 
in the data should generalize well and have low cross-
validation η  values. 

The light bars in Figure 11 show the cross-validation η  
values we obtained. The equivalent illuminant model con-
tinues to perform best. Note that the cross-validation η  
value obtained when the data for each session is predicted 
from the mean of the other two sessions (labeled “Preci-
sion”) is higher than that obtained for the equivalent illu-
minant model. This difference is statistically significant 
(sign test, p < .005). 

Although the equivalent illuminant model provides the 
best fit among those we examined, it does not account for 
all of the systematic structure in the data. ANOVAs con-
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ducted on the model residuals indicated that these depend 
on surface slant in a statistically significant manner for sev-
eral of our conditions (Experiment 1, p = .14; Experiment 
2, p = .14; Experiment 3 Left Neutral, p < .005; Experiment 
3 Right Neutral, p < .005; Experiment 3 Left Paint, p < .1; 
Experiment 3 Right Paint, p < .005). The systematic nature 
of the residuals was more salient for all four of the com-
parison models (p < .001 for all models/conditions) than 
for the equivalent illuminant model. 

Discussion 

Using the model 
The equivalent illuminant allows interpretation of the 

large individual differences observed in our experiments. In 
the context of the model, these differences are revealed as 
variation in the equivalent illuminant model parameters 
Dθ  and AF , rather than as a qualitative difference in the 

manner in which observers perform the matching task. In 
the polar plots we see that for each condition, the equiva-
lent illuminant model parameters lie roughly between the 
origin and the corresponding physical illuminant parame-
ters. Observers whose data resemble luminance matching 
have parameters that plot close to the origin, while those 
whose data resemble constancy matching have parameters 
that plot close to those of the physical illuminant. This pat-
tern in the data reflects the fact that observers’ performance 
lies between that of luminance matching and lightness con-
stancy. The fact that many observers have illuminant pa-
rameters that differ from the corresponding physical values 
could be interpreted as an indication of the computational 
difficulty of estimating light source position and relative 
ambient from image data. 

Various patterns in the raw data shown by many ob-
servers, particularly the sharp drop in match for 60Nθ = °  
when the light is on the left and the non-monotonic nature 
of the matches with increasing slant, require no special ex-
planation in the context of the equivalent illuminant 
model. Both of these patterns are predicted by the model 
for reasonable values of the parameters. Indeed, striking to 
us was the richness of the model’s predictions for relatively 
small changes in parameter values. 

A question of interest in Experiment 3 was whether 
observers are sensitive to the actual position of the light 
source. Comparison of Dθ  across changes in the light 
source position indicates that they are. The average value of 
Dθ  when the light source was on the left in Experiment 3 

was –35°, compared to 16° when it was on the right. The 
shift in equivalent illuminant azimuth of 51° is comparable 
to the corresponding shift in the physical model parameter 
(55°). 

Model-based constancy index 
In the companion study, we developed a constancy in-

dex based on comparing the fit error for luminance match-

ing and constancy. Such indices provide a summary of what 
the data imply about lightness constancy. At the same time, 
any given constancy index is of necessity somewhat arbi-
trary. It is therefore of interest to derive a model-based con-
stancy index and compare it with the error-based index. 

Let the vector  

sin
cos

D

D

v
v

θ
θ

 
=  
 

v  (11) 

be a function of the physical model’s parameters Dθ  and 
AF , with the scalar  computed from v AF  using Equation 7 

above. Let the vector  be the analogous vector computed 
from the equivalent illuminant model parameters 

v
Dθ  and 

AF . Then we define the model based constancy index as 

= 1-mCI
−v v

v
 (12) 

This index takes on a value of 1 when the equivalent illu-
minant model parameters match the physical model pa-
rameters and a value near 0 when the equivalent illuminant 
model parameter AF  is very large. This latter case corre-
sponds to where the model predicts luminance matching. 

We have computed this  for each ob-
server/condition, and the resulting values are indicated on 
the top left of each polar plot in 

mCI

Figures 5-10. The model 
based constancy index ranges from 0.23 to 0.91, with a 
mean of 0.57, a median of 0.57. These values are larger 
than those obtained with the error based index 
(mean/median 0.40). Figure 12 shows a scatter plot of the 
two indices, which are correlated at r = 0.73. The discrep-
ancy between the two indices provides a sense of the preci-
sion with which they should be interpreted. Given the 
computational difficulty of recovering lighting geometry 
from images, we regard the average degree of constancy 
shown by the observers (~0.40 – ~0.57) as a fairly impres-

Figure 12. -
stancy indi -
server. For
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sive achievement. The large individual variability in per-
formance remains clear in Figure 12. 

Interpreting the model parameters 
The equivalent illuminant model has two parameters, 

Dθ  and AF , that describe the lighting geometry. These pa-
rameters are not, however, set by measurements of the 
physical lighting geometry but are fit to each observer’s 
data. Given the equivalent illuminant parameters, the 
model predicts the lightness matches through an inverse 
optics calculation. 

It is tempting to associate the parameters Dθ  and AF  
with observers’ consciously accessible estimates of the illu-
mination geometry. Because our experiments do not explic-
itly measure this aspect of perception, we have no empirical 
basis for making the association. In interpreting the pa-
rameters as observer estimates of the illuminant, it is im-
portant to bear in mind that they are derived from surface 
lightness matching data, and thus, at present, should be 
treated as illuminant estimates only in the context of our 
model of surface lightness. It is possible that a future ex-
plicit comparison could tighten the link between the de-
rived parameters and conscious perception of the illumi-
nant. Prior attempts to make such links between implicit 
and explicit illumination perception, however, have not led 
to positive results (see e.g., Rutherford & Brainard, 2002). 

Independent of the connection between model pa-
rameters and explicitly judged illumination properties, 
equivalent illuminant models are valuable to the extent (a) 
that the provide a parsimonious account of rich data sets 
and (b) that their parameters can be predicted by computa-
tional algorithms that estimate illuminant properties (e.g., 
Brainard, Kraft, & Longère, 2003.; Brainard et al., 2004). 
As computational algorithms for estimating illumination 
geometry become available, our hope is that these may be 
used in conjunction with the type equivalent illuminant 
model presented here to predict perceived surface lightness 
directly from the image data. 
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Footnotes 
1A Lambertian surface is a uniformly diffusing surface 

with constant luminance regardless of the direction from 
which it is viewed.  

2A light source whose distance from the illuminated 
object is at least 5 times its main dimension is considered 
to be a good approximation of a point light source 
(Kaufman & Christensen, 1972). 
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