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The mean hue of flickering waveforms comprising only
the first two harmonics depends on their temporal
alignment. We evaluate explanatory models of this hue-
shift effect using previous data obtained using L- and M-
cone–isolating stimuli together with chromatic sensitivity
and hue discrimination data. The key questions
concerned what type of nonlinearity produced the hue
shifts, and where the nonlinearities lay with respect to
the early band-pass and late low-pass temporal filters in
the chromatic pathways. We developed two plausible
models: (a) a slew-rate limited nonlinearity that follows
both early and late filters, and (b) a half-wave rectifying
nonlinearity—consistent with the splitting of the visual
input into ON- and OFF-channels—that lies between the
early and late filters followed by a compressive
nonlinearity that lies after the late filter.

Introduction

We recently reported that the mean hue of L- or M-
cone–isolating flicker depended on the shape of the
flickering waveform even though the mean (time-
averaged) cone excitation remained constant. In
particular, L- and M-cone–isolating sawtooth wave-
forms, varying around a mean yellow-appearing
chromaticity, had different hues depending on whether
the sawtooth was slowly-rising–rapidly-falling or rap-
idly-rising–slowly-falling. In general, the hue shifted in
the direction of the slowly changing slope, so that the
mean hue of L- or M-cone isolating sawtooth flicker
that went slowly-redder–rapidly-greener appeared red-
der, whereas the hue of sawtooth flicker that went
slowly-greener–rapidly-redder appeared greener
(Stockman et al., 2017b). Measurements of the effects
of varying either the modulation of the waveforms or
the rates of change of their rising and falling slopes
suggested that the shifts in the mean hue depended

mainly on the first and second harmonics of the
flickering waveforms (Stockman et al., 2017b).

Panels B and D of Figure 1 show two cycles of the
slowly-off and slowly-on sawtooth waveforms (solid
black lines) together with the sums of their first and
second harmonics (dashed blue and dot-dashed khaki
lines, respectively). The shift in mean hue in the
direction of the slowly changing phase suggested a
nonlinear mechanism in the chromatic pathway that
responds differently to the slowly-on and slowly-off
sawtooth waveforms. This paper is concerned with
modeling and understanding the hue shifts. The key
questions that we address are the type or types of
nonlinearity involved, and where the nonlinearities lie
with respect to the temporal filtering that occurs in the
chromatic processing stream.

Types of nonlinearity

We have proposed two types of nonlinearity that
might account for the hue shifts (Stockman et al.,
2017b). First, a slew-rate limited mechanism that
restricts the rate at which internal representations that
determine hue can change. This restriction prevents the
visual system from following the rapidly changing but
not the slowly changing slope of low-frequency
sawtooth waveforms. As a result, the mean output
moves in the direction of the slowly changing slope.1

Second, a compressive (or saturating) nonlinear mech-
anism that instantaneously compresses hue signals—the
larger the signal, the greater the compression—thus
shifting the mean output of waveforms that are
asymmetrical in extent, such as the rectangular
waveforms shown as solid black lines in panels C and E
of Figure 1. These waveforms should exhibit hue shifts
in the direction opposite from the greater excursion
from the mean.

Citation: Stockman, A., Henning, G. B., & Rider, A. T. (2017). Linear–nonlinear models of the red–green chromatic pathway.
Journal of Vision, 17(13):7, 1–17, doi:10.1167/17.13.7.

Journal of Vision (2017) 17(13):7, 1–17 1

doi: 10 .1167 /17 .13 .7 ISSN 1534-7362 Copyright 2017 The AuthorsReceived July 21, 2017; published November 06, 2017

This work is licensed under a Creative Commons Attribution 4.0 International License.
Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/936571/ on 11/17/2017

mailto:a.stockman@ucl.ac.uk
mailto:a.stockman@ucl.ac.uk
http://www.cvrl.org
http://www.cvrl.org
mailto:g.henning@ucl.ac.uk
mailto:g.henning@ucl.ac.uk
http://www.cvrl.org
http://www.cvrl.org
mailto:a.rider@ucl.ac.uk
mailto:a.rider@ucl.ac.uk
http://www.cvrl.org
http://www.cvrl.org
https://creativecommons.org/licenses/by/4.0/


Temporal filtering in the chromatic pathway

It is difficult to know which of these two broad
classes of nonlinear mechanism (and potentially other
classes) is more likely to be responsible for the hue shift,
because we are uncertain about where the nonlinearities
lie in the chromatic processing stream, and in particular
where they lie with respect to the substantial temporal
filtering that occurs in the chromatic pathway (e.g., de
Lange, 1958). Such filtering changes, in effect, the
shapes of input waveforms as they are transmitted
through the visual pathway by altering the phases and
amplitudes of their harmonic components. Conse-
quently, a sawtooth waveform at the input to the visual
system is likely to be very different in shape when it
arrives at the nonlinear stage that generates the hue
shift. In order to understand the type of nonlinearity

involved, we propose to exploit our knowledge of the
likely shape of the waveform that produces the optimal
hue shift when it arrives at a given type of nonlinearity.

In our most recent work (Stockman, Henning, West,
Rider, & Ripamonti, 2017a), we simplified the saw-
tooth waveforms by presenting only their first and
second harmonic components. We then investigated the
effect of varying the alignment of the second harmonic
on the mean hue shifts. We represent the alignment in
terms of the second harmonic’s phase delay and
adopted the convention that the second harmonic
phase delay is zero when both first and second
harmonic components are in sine phase. Panel A of
Figure 1 shows two cycles of the fundamental
component (first harmonic) as the black sinusoid in sine
phase together with a set of second harmonics with half
the amplitude of the first—the relative amplitudes of
the first two harmonics of a sawtooth waveform.
Different colored sinusoids show second harmonics at
different second harmonic phase delays: 08 dashed blue
line, which when added to the first harmonic, produces
the slowly-off waveform shown in Panel B; 908 solid red
line, which produces the ‘‘peaks-align’’ waveform
shown in Panel C; 1808 dotted-dashed khaki line, which
produces the slowly-on waveform shown in Panel D;
2708 long-dashed green line, which produces the
‘‘troughs-align’’ waveform shown in Panel E.

With no filtering prior to the nonlinearity, the largest
mean hue shifts caused by a slew-rate limited nonlin-
earity, or by a differentiator followed by a symmetrical
nonlinearity1, should occur with the slowly-off and
slowly-on waveforms (panels B and D), which are
asymmetrical in slope, whereas the largest hue shift with
the compressive nonlinearity alone should occur for the
peaks-align and troughs-align waveforms (panels C and
E), which are asymmetrical in extent (see Stockman et
al., 2017a, figures 12 and 13).

Our measurements of mean hue shift as a function of
second harmonic phase delay showed that the largest
mean hue shifts towards red or green were roughly
independent of frequency and occurred when the
second harmonic phase delay was about 158 less than
the phase delays of 908 and 2708 that produce the
peaks-align and troughs-align waveforms (Stockman et
al., 2017a). Consequently, with respect to the two-
component waveforms at the input to the visual system,
the visual system as a whole behaves more like a system
that simply compresses hue signals rather than one that
limits their rate of change.

However, these predictions do not take into account
phase changes that are introduced before the nonlin-
earity—phase changes that alter the shape of the input
waveform. Indeed, if the preceding filtering is sub-
stantial enough, then filtering before the nonlinearity
might change the waveform shape from one that is

Figure 1. The black line in the top panel shows a sinusoid (first

harmonic or fundamental) of period T and the colored lines

show a set of second harmonics in a number of different phases

and with half the amplitude of the first. The black lines in the

other panels show waveforms used in the experiments together

with the sums of their first and second harmonics. The names

we use to describe the waveforms and the phase of their

second harmonics are: Panel B: slowly-off (08, blue short-dashed

line); Panel C: peaks-align (908, red solid line), Panel D: slowly-

on (1808, khaki dotted-dashed line), and Panel E: troughs-align

(2708, green long-dashed line).
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optimal for a compressive nonlinearity to one that is
optimal for a slew-rate limited nonlinearity.

The purpose of this paper is to use modeling to try to
understand the location of the nonlinearity or non-
linearities in the chromatic pathway (i.e., whether they
are early or late in the pathway) and to determine the
type of filtering that precedes or follows the nonline-
arity (i.e., whether it is low-pass, high-pass, or band-
pass). We eventually arrived at two plausible models:
one with a slew-rate limited nonlinearity and the other
with a simple compressive nonlinearity.

The data to be modeled

We begin by assessing how well the models can
simultaneously account for three important sets of data
taken from two previous papers (Stockman et al.,
2017a; Stockman et al., 2017b). First, (a) the chromatic
temporal contrast sensitivity functions (TCSFs) that
are often used to infer overall temporal processing in
the chromatic pathway (e.g., de Lange, 1958; Kelly,
1974), second (b) the functions showing the dependence
of the hue shift on the second harmonic phase delay in
two-component waveforms, and third (c) the TCSFs
for discriminating between the mean hue shift produced
by a sawtooth flickering waveform and the same
waveform with its polarity inverted.

The original research adhered to the tenets of the
Declaration of Helsinki.

The experimental details can be found in our
previous publications (Stockman et al., 2017a; Stock-
man et al., 2017b). Briefly, the experiments were
programmed in MATLAB with the Cambridge Re-
search Systems toolbox and presented via a VSG2/5
system (Cambridge Research Systems Ltd., Rochester,
Kent, UK) on a carefully linearized and calibrated 21
in. Sony FD Trinitron CRT display. Each waveform
was calculated as variations about a mean yellow field
(CIE x, y color coordinates¼ 0.410, 0.514, luminance¼
43.8 cd/m2), and could be L- or M-cone isolating or
equiluminant, chromatic variations. Observers in the
chromatic TCSF measurements viewed a circular 5.78
field and in the discrimination measurements compared
different waveforms in two 5.78 semicircular fields
separated by 0.68 and reported which half-field looked
redder. For further details and for other procedures,
please see the original publications.

Figures 2 and 3 show some of the data that the
models need to predict as well as some predictions from
various models. We begin by describing the data.

Chromatic TCSFs

The overall attenuation characteristics of the model
should be consistent with the chromatic TCSFs shown

in both panels of Figure 2 as orange diamonds: for
observers KR in the left-hand panel and for JA in the
right-hand panel. These data are replotted from figure 2
of Stockman et al. (2017b) and show log10 chromatic
sensitivity as a function of frequency (Hz, logarithmic
axis). To obtain these data, the modulation of
equiluminant red/green sinusoidal flicker was varied in
a two-alternative forced-choice experiment to find the
relation between modulation and detection perfor-
mance. The reciprocal of the modulation correspond-
ing to 75% correct detection was taken as the
‘‘threshold’’ sensitivity and the logarithm of the
sensitivity is plotted as orange diamonds in both panels
as a function of frequency. The chromatic TCSF is
often taken as an indication of the overall attenuation
characteristic of the chromatic pathway and repre-
sented by a single filter (e.g., Swanson, Ueno, Smith, &
Pokorny, 1987). Although the dip in the TCSFs at 3 Hz
is found in the data for both observers, and might
suggest the involvement of multiple chromatic mecha-
nisms at low frequencies rather than a single low-pass
mechanism, the dip is not a consistent feature of other
chromatic TCSF measurements (e.g., Kelly & van
Norren, 1977; Petrova, Henning, & Stockman, 2013b;
Varner, Jameson, & Hurvich, 1984). However, a similar
dip is seen in figure 2 of de Lange (1958), and Cass,
Clifford, Alais, and Spehar (2009) have identified low-
pass and band-pass chromatic mechanisms in masking
experiments that might give rise to such a dip.

Hue discrimination TCSFs

The model should also account for the L- and M-
cone hue-shift discrimination thresholds shown in the
panels of Figure 2 as red and green triangles (these data
are also replotted from figure 2 of Stockman et al.,
2017b). The results were obtained by a forced-choice
method in which observers were asked to discriminate
between the mean hues of matched but slowly-on and
slowly-off sawtooth waveforms as the modulations of
the waveforms to be discriminated were varied togeth-
er. We found the modulation corresponding to 75% of
the discrimination’s being consistently red or green and
define discrimination sensitivity as the reciprocal of
these modulations; the logarithm of the discrimination
sensitivity is plotted in Figure 2 as a function of
frequency—red triangles for L-cone isolating stimuli
and green triangles for M-cone isolating stimuli.

The hue discrimination data should reflect both any
filtering before the nonlinearity and the form of the
nonlinearity (i.e., its input–output function), both of
which will affect the visible distortion produced at the
nonlinearity. Since the important distortion product is
assumed to be mainly a mean or DC hue shift (the size
of which will depend on the form of the nonlinearity),
filtering after the nonlinearity should not alter the
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shape of the hue discrimination TCSF. The chromatic
TCSFs will, of course, be affected by filtering both
before and after the nonlinearity. As discussed below,
given that the stimuli in the chromatic TCSF task are
all near-threshold stimuli, the nonlinearity itself can, on
the basis of small-signal linearity (e.g., Kelly, 1966; Lee,
Pokorny, Smith, & Kremers, 1994), be assumed to have
a minimal effect on the chromatic TCSFs.

Second-harmonic phase delays

The phase characteristics of any filtering that occurs
before the nonlinear mechanism should be consistent
with the second harmonic phase delays that are plotted
twice as the symbols in Figure 3. Again, since the visible
distortion product after the nonlinearity is assumed to
be mainly a DC shift, the second harmonic phase
delays after the nonlinearity should be unimportant. In
Figure 3, the symbols give the second harmonic phase
delays (degrees) relative to the first harmonic in the
two-component stimuli at the input to the visual system

that produced the biggest mean hue shifts. Their
fundamental frequencies ranged from 4 to 16 Hz
(Stockman et al., 2017a). The label along the left
ordinate of the figure corresponds to these measure-
ments. The estimates are shown twice to illustrate that
the greatest hue shifts occur at two different second
harmonic phase delays for both L- and M-cone
stimuli—one in the red direction and the other in the
green direction. The data shown by the triangles for AS
and inverted triangles for KR are based on the
rectangular duty-cycle matches to mean hue made as a
function of second harmonic phase (from figures 7–9 of
Stockman et al., 2017a). There, the function relating
the matching duty cycle of a rectangular waveform to
the phase delay of the second harmonic was sinusoidal
in form. From the fitted sinusoids, we extracted the
second harmonic phases that produced the greatest
mean hue shifts. The error bars are the standard errors
of the phase in the sinusoidal fits.

Data from another experiment are also shown in
Figure 3: the half-filled diamonds for observer AS, the

Figure 2. Data are shown from two observers: KR in the left-hand panel, and JA in the right-hand panel, together with a number of

predictions. The orange diamonds are chromatic temporal contrast-sensitivity functions (TCSFs) in which log10 sensitivity for

sinusoidal equiluminant flicker is plotted as a function of frequency (Hz, logarithmic scale). The colored triangles represent sensitivity

in the discrimination of slowly-off from slowly-on sawtooth waveforms either for L-cone isolating stimuli (red triangles) or for M-cone

isolating stimuli (green triangles). The curves represent the attenuation characteristics of a number of different mechanisms discussed

in the text. Note that the vertical position of the chromatic TCSFs relative to the hue-discrimination TCSFs in Figure 3 is essentially

arbitrary, since we cannot easily relate the chromatic contrast that was varied to measure the chromatic TCSFs with the cone contrast

that was varied to measure the hue discrimination TCSFs.
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half-filled hexagons for VL, and the half-filled squares
for RTE are the midpoints between the second
harmonic phases of two-component waveforms at
which the mean hue changes from green to red or vice
versa (the data are from figure 10 of Stockman et al.,
2017a). The data are included on the assumption that
the midpoints correspond to the maximum hue shifts.

The horizontal gray lines show, as a function of
fundamental frequency, the second harmonic phases
that, among the two-component waveforms, would
lead to the biggest hue shifts at the input to the

nonlinearity—solid gray lines at 08 and 1808, if the slew-
rate limiting model were correct, dashed gray lines at
908 and 2708 if the saturation model were correct. In
Figure 3, the measured second harmonic delays are
plotted relative to the second and first harmonic’s being
in sine phase at 08. As noted before, the phases
producing the largest hue shifts fit neither model; they
are about 758 from the optimal phase predicted by the
slew-rate limited mechanism and 158 from the optimal
phase predicted by the symmetrical saturating nonlin-
earity.

The measured estimates of optimal second har-
monic phase relative to the first are roughly indepen-
dent of frequency between 4 and 10 Hz. In order to
achieve this independence, the phase characteristics of
any successful filter preceding the nonlinearity must
approximate a straight line over a substantial range of
frequencies above 4 Hz. Note that fixed time delays
have straight line phase characteristics, but because
they do not change the shape of the waveform they
preserve the relative phases of all the harmonics.
Plotted as the second harmonic relative to the first, as
in Figure 3, a time delay would be a horizontal line at
08.

Our approach has been to develop models and to fit
them simultaneously to the second harmonic phase
delay data and to the chromatic TCSFs. Many models
were tried, including low-pass filter cascades, band-pass
filters, models with different nonlinearities, and models
with different sequences of nonlinearities and filters.
Although a simple low-pass filter can predict TCSFs
well, it fails because its phase response changes too fast
above 4 Hz to predict the data in Figure 3. Models with
a single compressive nonlinearity after the early and
late chromatic filters fail because filters that can fit the
TCSFs of Figure 2, cannot fit the phase-delay data of
Figure 3. Below, we describe two models that fit both
sets of data.

We adopt the convention of plotting the filter
characteristics in Figures 3 and 5, below, as phase
advances (in accordance with the label along the right-
hand ordinates of the figure). By using this conven-
tion, if the model’s predictions are consistent with the
data, the filter phase characteristics plotted as
advances and the phase measurements plotted as
delays will coincide.

Models

A late slew-rate limited nonlinearity

We initially placed the slew-rate limited nonlinearity
after the low-pass temporal filtering in the chromatic
pathway; that is, after the filtering implied by the

Figure 3. The triangles show the relative phase of the second

harmonic in two-component stimuli that produce the biggest

hue shift as a function of frequency (Hz, linear scale)—triangles

for AS, inverted triangles for KR—red triangles for L-cone

isolating stimuli, green triangles for M-cone isolating stimuli.

The associated error bars represent the standard error of the

estimates. The other symbols, different for three different

observers, are the mid points of regions that have the same hue

bounded by settings of second harmonic phases where the hue

changes. The same data are shown in two locations to reflect

the two directions in which the biggest hue changes can

occur—one redward and one greenward. The horizontal gray

lines indicate the phase that would produce the biggest hue

shifts at the input either to the slew-rate limited mechanism

(solid horizontal gray lines) or to a saturating nonlinearity

(dashed horizontal gray lines). The curves and the right-hand

label are discussed in the text.
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chromatic TCSF, which is low-pass in shape, and
evaluated simple low-pass filters composed of n leaky
integrator stages. However, a simple low-pass filter is
an implausible approximation of chromatic filtering,
since, for one thing, it ignores the prominent surround
inhibition that occurs in the retina (e.g., Lee, Martin, &
Grünert, 2010).

A more realistic model of chromatic filtering comes
from earlier work from our laboratory shown sche-
matically in Figure 4 (Petrova et al., 2013b; Stockman,
Petrova, & Henning, 2014). In that work, we measured
the magnitude of the distortion products produced by
amplitude-modulated flicker in order to dissect chro-
matic temporal processing into a cascade of an early
band-pass filter and a later low-pass filter. Thus, the
model allowed us to split filtering in the chromatic
pathway into early and late stages. The early filter is
shown in the left-hand pink area of Figure 4 as a
network of L- and M-cones represented by the
interconnected red and green trapezoidal elements. In
this example, an L-cone (represented by a large red
trapezoid) is opposed by a surround driven by a
mixture of L- and M-cones. Two stages of a
hypothetical inhibitory horizontal cell network are
shown. The spatially distributed inhibitory input from
neighboring cones is represented by clusters of smaller
trapezoids in the ratio of two L-cone centered
contributors to one M-cone centered contributor—the

approximate proportion that appears to represent
most normal retinae (e.g., Carroll, Neitz, & Neitz,
2002; Cicerone & Nerger, 1989; Hofer, Carroll, Neitz,
Neitz, & Williams, 2005; Sharpe, Stockman, Jagla, &
Jägle, 2011; Vimal, Smith, Pokorny, & Shevell, 1989).
Note that the assumption of a 2:1 L:M cone ratio in
this and other models plays no direct role in the
modeling.

The early filters are chromatically opponent by
virtue of the horizontal cell feedback having inputs
from the opposing cone type—in this example from an
M-cone (e.g., Dacey, 2000; Field & Chichilnisky, 2007;
Rodieck, 1998; Wässle, 2004).

The late filter, shown in the blue-gray region of
Figure 4, is an n-stage low-pass filter of the form given
in Equations 1 and 2 with n¼ 2:

Al fð Þ ¼ Gl
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2 þ f 2cl
� �q n ; ð1Þ

ul fð Þ ¼ n tan�1
f

fcl

� �
; ð2Þ

where f is frequency (Hz), Al fð Þ is the attenuation
characteristic (or amplitude response) of the filter, and
ul fð Þ is its phase response. The parameter fcl is the
corner frequency (Hz) of each of the n identical,
cascaded, low-pass filters and Gl is the gain of the filter.
The corner (or cut-off) frequency, fcl, indicates the
frequency above which the filter attenuation begins to
increase significantly; it is the frequency at which the
attenuation of a cascade of n identical low-pass filters
has increased by

ffiffiffi
2
p n

from its low-frequency asymp-
totic level (see Equation 1).

The retinal complex constitutes the early filter and is
modeled as four leaky integrating stages (low-pass
filters) and two stages of feedforward inhibition
(modeled as lead compensators or lead-lag filters;
Rider, Henning, & Stockman, 2016). The resulting
early filter is band-pass in form, with three free
parameters:

Ae fð Þ ¼ Ge

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ ð fceð1� kÞÞ2
� �r 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ f 2ce
� �q 6

; ð3Þ

ue fð Þ ¼ 6 arctan
f

fce

� �
� 2 arctan

f

fce 1� kð Þ

� �
;

ð4Þ
where f is again frequency (Hz), Ae fð Þ is the
attenuation characteristic (or amplitude response) of
the filter, and ue fð Þ is its phase response. This
somewhat formidable formulation is a compact way of

Figure 4. Illustration of late slew-rate limited model. The early

filter arises from a common network of L- and M-cones (small

red and green trapezoids, respectively) influencing here the

response of an L-cone (large red trapezoid). There follows a

two-stage low-pass filter (the late filter) and then a slew-rate

limiting stage. For details see text.
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representing a network of four identical low-pass
filters and two lead-lag filters all with corner fre-
quency, fce. The overall gain of the early filter is Ge,
and the gain of the feedforward inhibition of the lead-
lag filters is k (if k¼ 1 the lead-lag filter is a standard
high-pass filter, while if k ¼ 0, it is an all-pass filter).
The lead-lag filter, which is mathematically equivalent
to the filter that we called ‘‘divisive’’ in our earlier
work (Petrova et al., 2013b; Petrova, Henning, &
Stockman, 2013a; Stockman et al., 2014), is designed
to capture the lateral interactions that contribute to
the early filter as sketched in the left-hand panel of
Figure 4. Considered alone, the early filter has three
free parameters and the late filter has two but, since
the two gains cannot be estimated independently,
there are only four free parameters. To capture the
overall gain, the gain of either the early or late filter
can be set to unity, so the overall model has just four
free parameters to be estimated from the data.

The data to be fitted are the chromatic TCSFs
(plotted as orange diamonds for KR and JA in Figure
2) and the estimates of the second harmonic phase
delays relative to the first harmonic that, among the
two-component waveforms we used, produce the
biggest mean hue shifts (plotted as colored symbols in
Figure 3).

The model predictions for the TCSFs are given by
the product of Equations 1 and 3, and the phase
characteristic of the cascade of early and late filters by
the sum of Equations 2 and 4. From that sum, the
model predictions for the second harmonic phase
advance relative to the first, u2ð f Þ, can be calculated
as:

u2 fð Þ ¼ 6 arctan
2f

fce

� �
� 2 arctan

2f

fce 1� kð Þ

� �

þ 2 arctan
2f

fcl

� �

� 2

	
6 arctan

f

fce

� �
� 2 arctan

f

fce 1� kð Þ

� �

þ 2 arctan
f

fcl

� �

: ð5Þ

We used Equations 1, 3, and 5, varied fce, fcl, k, and
an overall gain factor, G, to simultaneously optimize
the fit to the amplitude and phase data for a model with
the slew-rate limiting mechanism following the late
filter.

In all the fitting procedures, the model (Equations
1, 3, and 5) is implemented and the values of each of
the free parameters ( fce, fcl, k, and G in the present
case; n was fixed at integer values) are varied to find
the combination that produces the smallest mean
square difference between the predictions of the model
and the data. The value of n was constrained to take
on integer values in the final fits of each model. The

fits were made to the phase delays measured in
radians, because the phase delays in radians are
comparable in magnitude to the log contrasts. The
curve fitting procedure was the nonlinear regression
implemented in SigmaPlot (Systat Software, San Jose,
CA) based on the Marquardt-Levenberg algorithm
(Levenberg, 1944; Marquardt, 1963) that minimizes
the sum of the squared differences between the data
and model predictions. Note that for nonlinear
regression, R2 as a measure of goodness-of-fit is
problematic (e.g., Kvalseth, 1985; Spiess & Neumeyer,
2010), so that as well as giving R2 values, we also give
the standard error of the regression. Note that since
the fits were in radians, the standard errors for the
phase delay fits are also in radians.

For the slew-rate model to predict the phase data,
the cascade of early and late filters must advance the
phase of the second harmonic relative to the first so
that the phase delays of the second harmonic at the
input to the nonlinearity are either 08 or 1808 as
indicated by the horizontal gray lines in Figure 3
labeled ‘‘Slew phase.’’ These fits were again done
simultaneously across the amplitude and phase data for
all the observers using the same parameters with the
exception that a different overall gain factor
(G ¼ GeGl) was allowed for KR and JA for the TCSF
data.

For the late slew-rate limit model, the best fitting
parameters were: fce ¼ 27.67 6 1.97 Hz, fcl ¼ 2.08 6
0.37 Hz, and k¼ 0.78 6 0.02. G in log10 units was 11.02
6 0.15 for KR and 10.81 6 0.15 for JA. The R2 value
for the fit was 0.834 and the standard error of the
regression was 0.202.

The predictions for the second harmonic phase are
shown separately for the early and late filters in the
lower half of Figure 3. The blue line shows the second
harmonic phase relative to that of the first for the late
(low-pass) filter, the red line for the early (band-pass)
filter. However, the crucial prediction, for the cascade
of the early and late filter is shown in both the upper
and lower sections by the orange lines. As can be seen,
the phase advances of the second harmonic produced
by the combined filter agree with the second harmonic
phase delays in the stimuli that produce the maximum
hue shifts. According to this model, the stimuli at the
nonlinearity that produce the maximum hue shifts
have second harmonic phase delays that closely
approximate the slowly-off and slowly-on sawtooth
stimuli.

The blue and red lines in Figure 2 show the
attenuation characteristics of the early and late filters
derived from the fits. Note that the red and blue lines
have been plotted at arbitrary relative positions on the
ordinate as their separate gains cannot be estimated
independently from the data. The orange line shows the
cascaded attenuation characteristics of these early and
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late filters. As can be seen, the cascade accounts well for
the chromatic TCSF data from 6.67 to 13.33 Hz,
although it overestimates the measured sensitivity at 2
and 4 Hz.

The third set of data for which the model should
also account are the hue discrimination data shown in
Figure 2 as red and green triangles. These results are
more difficult to predict since, although the observers
reported that they based their judgments on mean hue
shifts, we do not know the characteristics of the
outputs of the second filter on which the judgments
depend. However, in our earlier work (Stockman et al.,
2017a) we suggested that the discriminability of the
hue shifts depends on the transmission of the second
harmonic by the chromatic filter. Consequently, we
might expect the shape of the hue-discrimination
TCSF to depend on the shape of the chromatic TCSF
but at double the fundamental frequency. Then the
sensitivity difference between the hue shift discrimina-
bility at, for example, 5 and 10 Hz, should depend on
the sensitivity difference between the detection of
chromatic sinusoids at 10 and 20 Hz, and so on. In
terms of shapes, this is equivalent to shifting the
logarithmic chromatic TCSF functions (orange lines)
by 0.3 log unit along the log frequency scale toward
lower frequencies (or on a linear frequency plot
halving the frequency), as shown by the red-green
dashed lines. The shape of the shifted function agrees
with the hue-discrimination data (red and green
triangles), which supports the suggestion that the
second harmonic transmitted through the late filter is
the important factor (but see below).

An intermediate compressive nonlinearity

For the late nonlinearity to be a saturating
nonlinearity, in addition to accounting for the TCSF
data, the filters must together delay the phase of the
second harmonic relative to the first so that the phase
delays of the second harmonic at the input to the
nonlinearity are either 908 or 2708. However, we could
not find a pair of early and late filters that would
account for both the amplitude and the phase data
simultaneously, but we could find a combination in
which the early filter alone accounts for the phase data
while the early and late filter together account for the
amplitude data. This suggests that the important hue-
shifting nonlinearity might lie between the early and
late filters. In this section, we investigate a model with a
nonlinearity between the early and late filters.

The model predictions for the second harmonic
phase advance relative to the first, u2ð f Þ for the early
filter alone can be calculated from Equation 4:

u2 fð Þ ¼ 6 arctan
2f

fce

� �
� 2 arctan

2f

fce 1� kð Þ

� �

� 2

	
6 arctan

f

fce

� �

� 2 arctan
f

fce 1� kð Þ

� �

: ð6Þ

In this model, the early filter (Equation 6) should
adjust the relative second harmonic phase at the input
to align with the saturation phase predictions shown by
the dashed and solid lines in Figure 6, while the cascade
of early and late filters (Equations 1 and 3) should
predict the chromatic TCSFs shown in Figure 5 by
orange diamonds.

The best-fitting parameters for a model with the
saturating nonlinearity between the early and late filters
were: fce ¼ 20.67 6 1.22 Hz, fcl ¼ 2.68 6 1.49 Hz, k ¼
0.55 6 0.02, and G, in log10 units, was 9.27 6 0.11 for
KR and 9.06 6 0.11 for JA; the fits to the TCSFs are
shown as orange lines in the panels of Figure 5. The fit
is remarkably good and as good as the fits of the slew-
rate limiting model in that the TCSF is well fit over the
entire range of frequencies. The R2 value of 0.835 and
the standard error of the regression was 0.201.

The model fits to the chromatic TCSF data, shown by
the solid orange lines in each panel of Figure 5, are the
combined amplitude characteristics of the cascade of the
optimized early band-pass filter (red line), and the
optimized late low-pass filter (blue line). One unexpected
result is that instead of the low-pass late filter’s having
two stages, the best fit to the chromatic TCSFs was
obtained with a single stage, so that n¼ 1 in Equations 1
and 2. As well as changing its attenuation characteris-
tics, this halves the phase delays caused by the late filter.
The model fits to the phase data are shown by the red
line in Figure 6. Again, the fits are good.

Note here that in assuming that the chromatic TCSF
can be modeled as the cascade of the early and late
filters, we are ignoring any effects of the now
intervening nonlinearity. It is generally reasonable to
assume that small, near-threshold signals behave
approximately linearly (e.g., Kelly, 1966; Lee et al.,
1994), although, of course, ‘‘threshold’’ signals at the
output of the late filter might have been produced by
large amplitude inputs to that filter (we address this
issue for half-wave rectification in Appendix 1).

In this particular model, the distortion signal that
underlies the hue discrimination is produced by the
nonlinearity prior to the late filter. That distortion is a
shift in the mean and apart from the gain of the late
filter, which affects all frequencies equally, the attenu-
ation characteristics of the late filter should not affect
the hue shift. This means that hue discrimination as a
function of frequency should follow the attenuation
characteristics of the early filter alone. The early filter’s
attenuation hardly changes over the 4–13 Hz range (red
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lines in Figure 5) and is obviously dissimilar to the
steeply low-pass shape of the hue-shift discrimination
data (red and green triangles in Figure 5). Therefore,
this model, with a single intermediate nonlinearity,
cannot predict the hue discrimination data. For similar
arguments, see other descriptions of the linear–nonlin-
ear–linear ‘‘sandwich’’ models (e.g., Marmarelis &
Marmarelis, 1978; Petrova et al., 2013b; Victor,
Shapley, & Knight, 1977).

To preserve the approach of using a saturating
nonlinearity, we can turn again to the model originally
proposed by Stockman et al. (2014) to explain their
flicker distortion results, which is illustrated in Figure
7. As in Figure 4, the left-hand pink region of Figure 7
shows the early filter as cone networks with, in this
sketch, an upper network with a central L-cone and a
lower one with a central M-cone. Half-wave rectifiers at
the output of each network split the networks’ outputs
into ON- and OFF-signals. The four half-wave
rectifiers are represented by the input–output functions
shown in the green area of the diagram. The half-wave
rectifiers are designed to capture cells with four types of
chromatic receptive field shown as concentric circles. In
the fovea, where midget parvocellular bipolar cells
predominantly contact single L- or M-cones (Calkins,
Schein, Tsukamoto, & Sterling, 1994; Kolb & De-
korver, 1991), the four types are: L-ON, M-ON, L-
OFF, and M-OFF, but each will vary according to the

Figure 5. Data replotted from Figure 2 together with predictions discussed in the text.

Figure 6. Data replotted from Figure 4 together with predictions

discussed in the text.
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cone types driving the cells’ surrounds (Derrington,
Krauskopf, & Lennie, 1984; Dreher, Fukada, &
Rodieck, 1976; Lee, Valberg, Tigwell, & Tryti, 1987;
Wiesel & Hubel, 1966). The black lines in the squares
indicate the half-wave rectification, while color varia-
tion in the squares and in the centers of receptive fields
indicate the direction of chromatic variation associated
with increases and decreases in the cone excitations
driving the receptive-field centers.

The half-wave rectifiers, which partition the signals
from the L- and M-cone photoreceptors into ON and

OFF signals, are now the intermediate nonlinearities
between the early and late filters. The half-wave
rectifiers are assumed to occur at the first visual synapse
where the L- and M-cones jointly contact diffuse and
midget ON bipolar cells via sign-inverting synapses and
contact OFF bipolar cells via sign-conserving synapses
(e.g., Boycott & Dowling, 1969; Boycott & Wässle,
1991; Calkins et al., 1994; Grünert, Martin, & Wässle,
1994; Kolb & Dekorver, 1991; Polyak, 1941; Wässle &
Boycott, 1991). Since cones hyperpolarize in response
to light (i.e., their response becomes more negative),

Figure 7. Model of the chromatic visual system from Stockman et al. (2014). The left-hand side in the pink region shows two networks

of L- and M-cone receptors represented as red and green trapezoids, respectively. The upper cluster produces signals that drive ON

and OFF centered units with chromatically opponent center and surround (concentric disks) both with L-cone driven centers (LON and

LOFF). The lower cluster is similarly divided but with M-cone driven centers (MON and MOFF). All four units are half-wave rectified as

indicated in the squares in each pathway. The LON and MOFF units are combined into a ‘‘Red’’ channel because increases in L-cone

excitation and decreases in M-cone excitation are generally perceived as changes in hue towards red. The MON and LOFF units are

linked in the ‘‘Green’’ channel because increases in M-cone excitation and decreases in L-cone excitation are generally perceived as

changes in hue towards green. The signals in the Red and Green channels are then filtered by identical late two-stage low-pass filters

before compressive (saturating) nonlinearities.
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ON bipolar cells depolarize (their response becomes
more positive) as the light is increased, whereas OFF
bipolar cells depolarize as the light is decreased. Half-
wave rectification in the retina is not complete, since the
responses of ON and OFF neurons in the retina can fall
below their resting levels to the lower limit of the cell’s
response (e.g., Kuffler, 1953), but it is complete in the
cortex (e.g., Albrecht & Geisler, 1991; Heeger, 1991;
Movshon, Thompson, & Tolhurst, 1978).

In Figure 7, the outputs of the LON and MOFF

receptive fields are combined in a unipolar ‘‘Red’’
channel, and the outputs of the MON and LOFF receptive
fields are combined in a unipolar ‘‘Green’’ channel
before separately reaching identical late filters. Evidence
in support of unipolar Red and Green mechanisms as
opposed to bipolar red–green mechanisms is discussed
by, for example, Eskew (2008), Sankeralli & Mullen
(2001), and Wuerger, Atkinson & Cropper (2005). Our
previous work suggested that the late filter acts as a two-
stage low-pass filter that begins to attenuate chromatic
flicker about 3 Hz (Petrova et al., 2013b; Stockman et
al., 2014). However, the fits in the previous section
suggest that the late filters might be single-stage, and
that is how they are depicted in the blue-gray region of
Figure 7. Lastly, compressive late or central non-
linearities in the red and green pathways are shown in
the right-hand khaki region and represented by a
saturating function.

In the Stockman et al. (2014) model, the half-wave
rectifiers were assumed to account for the brightness
enhancement that accompanies flicker, while the half-
wave rectifiers plus the late saturating nonlinearity
together accounted for the hue changes that accompany
flicker. The crucial idea was that the flicker distortion at
the half-wave rectifiers was then further distorted at the
saturating nonlinearity to produce the hue shifts that
they measured (for discussion and reviews of these
effects, see Petrova et al., 2013a; Petrova et al., 2013b;
Stockman et al., 2014). We employ a similar model here.

For the modified model with two nonlinearities, we
again use the early and late filters derived above, since as
before, the cascade of early and late filters accounts for
the chromatic TCSF and the early filter accounts for the
phase data. To reiterate, the model parameters are fce ¼
20.67 6 1.22 Hz, fcl ¼ 2.68 6 1.49 Hz, k¼ 0.55 6 0.02,
and G¼ 9.27 6 0.11 for KR and 9.06 6 0.11 for JA. As
already shown, this model fits the chromatic TCSFs and
the phase data, but how can an intermediate nonlinearity
made up of half-wave rectifiers and a late nonlinearity
made up of a compressive input-output function account
for the hue-shift discrimination TCSFs (red and green
triangles, Figure 5)? To explain the final version of this
model, we start with an illustrative example of the effects
of the half-wave rectifier and the saturating nonlinearity
on the two-component, troughs-align, L-cone–isolating
waveform shown at A in Figure 8.

Figure 8. An illustrative simulation showing an L-cone-isolating

stimulus (A). The ‘‘troughs-align’’ stimulus (A) is to be

discriminated from the matched ‘‘peaks-align’’ stimulus (A0).

The troughs-align stimulus is taken through the model and is

passed through the early band-pass filter (denoted by its

impulse response as the gray icon) to produce the filtered signal

(B). This is then divided into ON and OFF pathways by half-wave

rectifiers (denoted by the input–output relations shown as red-

green icons) to produce ON and OFF signals (C1 and C2). Signals

in both pathways then pass through one-stage low-pass filters

(denoted by their impulse responses as the red and green icons)

to produce outputs at D1 and D2, which then enter a

compressive nonlinearity (denoted by the input–output rela-

tions as the gray-red and gray-green icons) that distorts them to

produce the final outputs E1 and E2. The black dashed lines in A

and B show the mean of the input signal and early filtered

signal, respectively. The red and green dashed lines show the

means in the ON and OFF pathways, respectively. Both green

and red dashed lines in have been plotted in E2 and E1 for ease

of comparison. The signal shown in A0 would produce a larger

‘‘green’’ than ‘‘red’’ mean at E2 and E1.
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The input signals to be discriminated are shown at
the top of Figure 8: in panel A is a two-component
(first and second harmonic) troughs-align waveform
with a fundamental frequency of 5 Hz, in which the
second harmonic is phase delayed by 2598 relative to
the first, and is half the amplitude of the first. The
inverse waveform from which it is to be discriminated
has the second harmonic shifted by 1808; it is peaks-
align and is shown in panel A0. Increase in the L-cone
input is shown as positive in both cases. We trace the
troughs-align (A) waveform through the model. The
troughs-align signal passes through the early band-pass
filter (shown as its impulse response in the gray box) to
produce the slightly different signal in panel B. Note
that the change in shape is minor because the amplitude
responses of the early filter at 5 and 10 Hz are similar
(approx. 0.06 log unit difference; red curves in Figure
5), and the phase response is approximately linear in
this range (producing a phase delay of 258 at 5 Hz and
618 at 10 Hz). The mean signal is shown as the dashed
horizontal line. The filtered signal is then half-wave
rectified around the signal mean to produce the ON
and OFF signals shown in panels C1 and C2,
respectively. The mean signals, which are equal at this
stage, are shown as the dashed green and red horizontal
lines in C1 and C2, respectively. Then, each of the ON
and OFF signals are filtered by the single-stage late
filter with a corner frequency of 2.68 Hz to produce the
filtered ON and OFF signals shown in panels D1 and
D2, again with equal means. Finally, the filtered ON
and OFF signals are compressed by an instantaneous
saturating nonlinearity. The exact choice of nonline-
arity does not materially affect the results (we tried
several); here we choose a function (Naka & Rushton,
1966) that is linear for small values and saturates
towards a maximum value of 1:

r xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

x2 þ x02

s
; ð7Þ

where x is the instantaneous signal intensity at the late
nonlinearity and x0 is the intensity at which the com-
pressed response is 1ffiffi

2
p times its maximum. This

produces the compressed ON and OFF signals shown
in panels E1 and E2. The dashed lines in panels E1 and
E2 show both the ON (red dashed lines) and the OFF
(green dashed lines) means for comparison. Because of
compression, the mean in the ON channel (red dashed
line) is higher than the mean in the OFF channel (green
dashed line). We assume that the mean hue reported by
our observers shifts in the direction of the larger mean
signal so that, for this L-cone example with a troughs-
align stimulus, the hue shifts towards red, even though
the input stimulus modulates around a mean yellow-
appearing chromaticity. Notice that the means of the
ON and OFF signals are the same until after the final

compressive nonlinearity. As noted above, in our
experiments, observers viewed the two-component
waveform and its inverse in two 5.78 semicircular fields
separated by 0.68 and reported which half-field looked
redder. Panel A0 shows the inverse waveform of that
shown in panel A. Passing the waveform in A0 through
the model stages produces mean hue shifts in the
opposite hue directions.

The predictions of this model depend on the fact that
when two-component first and second harmonic
waveforms are half-wave rectified the relative modula-
tions of the first and second harmonic components (and
other components) that appear in the ON and OFF
pathways depend on the phase delay between the
second and first harmonics before the rectification. In
the example shown in Figure 8, the first harmonic of
the troughs-align waveform after filtering and rectifi-
cation is about 60% larger in the OFF pathway than in
the ON; for the peaks-align waveform (not shown), the
first harmonic is about 60% larger in the ON pathway
than in the OFF pathway; and for the rapid-on and
rapid-off waveforms the first harmonic amplitudes in
the ON and OFF pathways are equal. The late low-pass
filter selectively attenuates the higher harmonics, so
that the important harmonic components that reach
the late saturating nonlinearity are the DC (which is
equal in the two pathways), the first harmonic, and to a
lesser extent the second harmonic. In general, the ON
or OFF pathways with the larger first harmonic (and
therefore with the greater excursions away from the
mean) will be more compressed, causing a DC shift at
the output of the late nonlinearity as shown by the
dashed red and green lines in panels E1 and E2 of
Figure 8. Crucially, then, since the amount of
compression depends on the sizes of the first harmonic
reaching the late nonlinearity, it will also depend on the
attenuation of that harmonic by the late filter.

The half-wave rectification alters the amplitude of
the components that are present in the input signals
and also introduces new harmonic components. Figure
9 shows how the post-rectification amplitudes of the
DC (black line), the first (red lines), second (green
lines), third (blue line), and fourth (purple line)
harmonics in the ON and OFF pathways depend on the
relative phase of the second harmonic for two-
component first and second harmonic waveforms in the
amplitude ratio of 1.0 to 0.5 before the half-wave
rectifiers (here we ignore the effect of the early filter,
which will produce only minor changes in the
amplitude ratio for low fundamental frequencies). The
solid lines show the amplitudes of the harmonic
components in the ON pathway and the dashed lines
those in the OFF pathway all as a function of the phase
delay (degrees) in the second harmonic. The DC, third
and fourth harmonic components (created by the
nonlinearity) have the same amplitude in the ON and
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OFF pathways so, for those three, only the solid lines
are shown.

Figure 9 illustrates that for the slowly-off and
slowly-on waveforms with second harmonic phase
delays relative to the first harmonic of 08 and 1808 at
the input to the half-wave rectifiers, the amplitudes of
the first (fundamental) and second harmonics in the
two pathways are equal in amplitude so no hue shift
would be produced. But for other phases there are
amplitude differences between the ON and OFF
pathways. Further, and consistent with the saturation
model (see above), the differences are largest at 908

(peaks-align) at which the first harmonics are ap-
proximately 60% larger in the ON than in the OFF
pathway, and at 2708 (troughs-align) where the signals
are 60% larger in the OFF pathway. The second
harmonics also have their largest difference at 908 and
2708 with a roughly four-fold difference between the
ON and OFF signals. Note that the first and second
harmonics of the half-wave rectified signals vary

together as the phase delay of the second harmonic of
the input is varied, so that they can synergistically
boost their sum in the ON or OFF pathway before the
compressive nonlinearity. However, in absolute terms,
the second harmonic amplitude is always between 1.5
and 4 times smaller than the corresponding first
harmonic, and after the late filter, will be smaller still,
so that the half-wave rectifying nonlinearity will
mainly affect the size of the first harmonic for these
stimuli.

We can now account for the hue-discrimination
thresholds shown as triangles in Figure 5 using this
modified model. Since both the early and the late filter
attenuate the first harmonic signal that undergoes
compression to produce the mean hue shift, the
dependence of hue-shift discrimination on frequency
should be at least as steep as the chromatic TCSF to
which both early and late filters contribute. The
discrimination data is in fact steeper, which may
suggest that the hue discrimination also depends on
the shape of the saturating nonlinearity and its input–
output function. The most significant term in Taylor’s
expansions of a smoothly compressive nonlinearity,
such as a logarithmic or power function, is quadratic
(see Kelly, 1981). Thus, we might expect the shape of
the hue-discrimination TCSF to be the square of the
chromatic TCSF (i.e., the sensitivity squared), and
that is what we find. The red–green dashed lines
aligned with the hue-shift discrimination threshold are
the squared and vertically aligned chromatic filter in
Figure 5.

Some of the small deviations we see between our
data and the model could reflect retinal inhomogene-
ities over the relatively large target size of 5.78.
Inhomogeneities in macular pigment density and
photoreceptor optical density (Stockman & Sharpe,
1999), for example, could result in cone-isolating
stimuli generating small signals in the nominally
silenced cone. In addition, since the stimuli extend
beyond the fovea, they will also excite parvocellular
cells with center responses that derive from more than
one cone (e.g., Kolb & Marshak, 2003), which might
slightly change the model parameters (e.g., the feed-
back, k).

Summary

We are now left with two plausible models that can
account for our data. One is a linear–nonlinear model
with a slew-rate limited nonlinearity after the early and
late filters (Figure 4), and the other is linear–nonlinear–
linear-nonlinear model with an intermediate half-wave
rectifying nonlinearity between the early and late filters
and a compressive nonlinearity after them (Figure 7).

Figure 9. Effect of half-wave rectification and partition into ON-

and OFF-channels on the DC component and the first four

harmonics of waveforms from a half-wave rectifier in response

to an input waveform that consists only of the first and second

harmonics. Amplitude at the output of the half-wave rectifiers

is shown as a function of the phase of the second harmonic at

the input to the half-wave rectifiers. At the input, the second

harmonic had half the amplitude of the fundamental. Solid lines

show the amplitudes in the ON pathway, dashed lines, the

amplitude in the OFF pathway. The DC component (black line),

the third (blue line), and fourth (purple line) harmonics are

identical in the ON and OFF pathways but the first (red lines)

and second (green lines) differ markedly in the two pathways.
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We cannot, however, distinguish between these two
models on the basis of our existing data.

A crucial difference between the two models, and a
possible way to distinguish them, is their predictions of
the effect of higher harmonics on the hue shifts
produced by complex waveforms. Higher harmonics
that are significantly attenuated by the late filter should
have no effect on the hue shift generated at the late
slew-rate nonlinearity in the linear–nonlinear model.
By contrast, they may alter the hue shift in the linear–
nonlinear–linear–nonlinear model because they reach
the half-wave rectifier where they can change the
relative sizes of the first and second harmonics carried
in the ON- and OFF-pathways, and thus affect the hue
shift produced at the late compressive nonlinearity
(even though, if presented alone, they might be
invisible).

Keywords: color, chromatic flicker sensitivity,
saturating nonlinearity, compressive nonlinearity,
temporal vision, slew-rate limit, half-wave rectifier, ON
and OFF pathways
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Footnote

1 A related possibility is a mechanism made up of a
differentiator followed by a symmetrical compressive
(saturating) nonlinearity (Cavanagh & Anstis, 1986),
but since this mechanism entails similar hue-shift
predictions we just consider the slew-rate limited
mechanism.
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Appendix

For the late slew-rate limited model, we formed the
cascade of the early and late filters and calculated the
attenuation characteristics of the cascade as the
product of the attenuation of the constituent filters and
the phase response of the cascade as the sum of the
phase response of the constituents. This is an appro-
priate procedure when nothing but linear systems

intervene between the two filters. However, in the
model of Stockman et al. (2014) shown in Figure 7,
half-wave rectifiers lie between the early and late filters.
Unless the input to the rectifiers lie wholly on the linear
(unrectified) branch of the half-wave rectifiers, we need
to know what effect half-wave rectification may have
on our flickering signals in order to determine the
predictions of this model.

First, consider the effect of half-wave rectification on
a sinusoidal input of unit amplitude, frequency f, zero
mean, and zero phase; that is, y tð Þ ¼ sin 2pftð Þ. We can
calculate the Fourier series components of the positive
and negative half-wave rectified signals, Yþ and Y�:

Yþ k½ � ¼ 1

T

Z T

0

yþ tð Þei2pkft dt

¼ 1

T

Z T
2

0

sin 2pftð Þei2pkft dt ðA1aÞ

and

Y� k½ � ¼ 1

T

Z T

0

y� tð Þei2pkft dt

¼ 1

T

Z T

T=2

sin 2pftð Þei2pkft dt; ðA1bÞ

where T ¼ 1
f is the period of the waveform, and the

changes in the limits of the integrals on the right-hand
side are due to the fact that y . 0 only between 0 and
T/2 and y , 0 only between T/2 and T. Solving
Equations A1a and A1b for k ¼ 0, 1, 2, etc., gives the
two complete Fourier series representations:

yþ tð Þ ¼ 1

p
þ 1

2
sin 2pftð Þ � 2

p

X‘

n¼1

cos 2n2pftð Þ
4n2 � 1

ðA2Þ

and

y� tð Þ ¼ � 1

p
þ 1

2
sin 2pftð Þ þ 2

p

X‘

n¼1

cos 2n2pftð Þ
4n2 � 1

:

ðA3Þ
The amplitudes of the various components are equal

in the ON and OFF pathways and, with the exception
of the first harmonic, are opposite in sign and therefore
would cancel if the two signals were summed. The
phases of the first harmonic components are identical in
the ON and OFF pathways, and the amplitudes are
half the input amplitude so that if the positive and
negative signals were summed, they would combine to
give back just the original unit amplitude sinusoid. The
main effects of half-wave rectification of a sinusoid are
(a) to introduce Fourier components that are not in the
original signal, and (b) to divide the fundamental
equally between the ON and OFF pathways. From
Equations A2 and A3 we can see that the fundamental
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is scaled by a constant factor (1/2) and the introduced
components are all much smaller than the fundamental
component (e.g., the second harmonic amplitude is
42% that of the fundamental, the third is 15%, the
fourth is 8%, and so on) so the small signal linearity
assumption is still reasonable.

However, when we consider more complex wave-
forms—even just adding the second harmonic at a fixed
amplitude ratio, as in Stockman et al. (2017a), in this
paper, and in Rider et al. (2016)—the half-wave
rectifiers’ outputs become much more complicated.
While it is possible to compute the Fourier components
using the same method as for a single sinusoid
(Equations A1a and A1b) it crucially requires knowl-
edge of the zero crossings of the waveform. For a single
sinusoid, these are simply 0 and T/2, but for the two-
component waveform (with amplitude ratio 1:0.5 and
relative phase, u, of the second harmonic) they are the
solutions for t of:

sin 2pftð Þ þ sin 4pftþ uð Þ
2

¼ 0: ðA4Þ

While Equation A4 looks relatively simple, it
requires finding two real solutions of a fourth order
polynomial. Although fourth order polynomials are the
highest order that can always be solved analytically, the
solution is not necessarily simple, and certainly does
not seem to be in this instance. It should also be noted
that the solution would not generalize in a straight-
forward manner, for example adding a third harmonic
to the input would lead to a sixth-order polynomial.

Instead of pursuing this method, we used MAT-
LAB’s fast Fourier transform routine to find the
solutions numerically. Figure 9 in the main text shows
the computed amplitudes of the DC and the first four
components of the half-wave rectified two-component
signals in the ON (solid curves) and OFF (dashed
curves) signals. Note that only components that
featured in the original waveform (in this case the first
and second harmonics) have different amplitudes in the
ON and OFF pathways. At 08 and 1808 (the slowly-off
and slowly-on waveforms of our experiments) all the
harmonics in both the ON and OFF pathways have the
same amplitude.
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